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Shock formation in an exclusion process with creation and annihilation
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We investigate shock formation in an asymmetric exclusion process with creation and annihilation of
particles in the bulk. We show how the continuum mean-field equations can be studied analytically and hence
derive the phase diagrams of the model. In the large system-size limit direct simulations of the model show that
the stationary state is correctly described by the mean-field equations, thus the predicted mean-field phase
diagrams are expected to be exact. The emergence of shocks and the structure of the phase diagram are
discussed. We also analyze the fluctuations of the shock position by using a phenomenological random walk
picture of the shock dynamics. The stationary distribution of shock positions is calculated, by virtue of which
the numerically determined finite-size scaling behavior of the shock width is explained.
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[. INTRODUCTION detachment of the motor protein to the filament depends on
the particular type of filament.

The analysis of self-driven particle models is a central To a first approximation, the motion of many motor pro-
issue of nonequilibrium statistical mechanids-5|. These teins along a filament can be modeled by the asymmetric
models show a variety of generic nonequilibrium effects, inexclusion process. An important feature, which is not de-
particular, in low dimensions. Although the behavior is gen-scribed by the ASEP, is the attachment and detachment of the
erally rather complex, some models are simple enough to beotor-protein heads. This feature has been included in a re-
analyzed in great detail. In rare cases, it is even possible toent model by Parmeggiaet al. [14] (see also Ref{28]),
obtain exact results for the stationary st5]. A very  which can be viewed as a grand-canonical counterpart of the
prominent example of such a model is the asymmetric excluUASEP in the sense that in the bulk the particle number is not
sion proces$ASEP which comprises particles hopping in a conserved.
preferred direction under the constraint that they cannot oc- For open boundary conditions, however, the situation is
cupy the same lattice site. Exact solutions for the stationarglifferent. In this case, if the rates of attachment scale cor-
state exist for periodi¢1,6] and open boundary conditions rectly with system length, one observes a subtle interplay
[7,8] and different update schemg8—-11]. Therefore, this between the left, right, and bulk particle reservoirs. If we fix
model has been used in order to develop more general cothe attachment and detachment rates then there are whole
cepts for systems far from equilibrium, e.g., a free-energyegions of the phase diagraispanned by the densities of the
formalism[12]. Variants of the model have also allowed the boundary reservoijsvhere one observes thecalization of
study of shocks which are discontinuities in the density ofshocks in the bulk of the system. This is in contrast to the
particles over a microscopic distancE]. ASEP, where shocks move with constant velocity and are

The ASEP and related models are not only of academigenerally driven to the boundary of an open system. The
interest, but have a number of important applications, e.g., ashock has zero velocity only on the phase boundary where
simplified traffic modelg[4]. Here, we are interested in a two phases of different density coexist. Even in this case, the
variant of the ASEP, which is motivated by biological trans-shock is not localized since it diffusively explores the whole
port processes in living cell systems, where particle nonconsystem.
servation in the bulk of the system is allowg#] (see also The physical origin of the shock localization in the
Ref.[28]). present model and a discussion of the phase diagram, in par-

An important feature of living cells is their ability to ticular, the phase where shocks appear are the subject of this
move and to generate forcgb—17. On a microscopic level paper. We shall show how the phase diagram can be pre-
these forces are mostly generated by motor proteliBsl9, dicted through simple considerations pertaining to a con-
which are able to perform directed motion along one-tinuum mean-field description that only retains first-order
dimensional paths or filaments. terms, i.e., the phase diagram can be predicted through the

Many different motor proteins can be distinguisHé@], study of a simple first-order nonlinear partial differential
but they have a few common properties: a head, which caequation. Going beyond the mean level, in the shock phase
couple to a filament, where it performs a directed stochastigve describe the dynamics of the shock by a random walker
motion and a tail, which is attached to a specific load, whichwith space-dependent hopping rates. In this way, the local-
has to be transported through the cell. The coupling of thézation of the shock can be understood.
motor protein heads to the filament is reversible, thus the The paper is organized as follows. In the following sec-
motor proteins will attach to the filament, perform stochastiction, we give the definition of the model and introduce the
directed motion for some time, and eventually detach fronstationary solution in case of periodic boundary conditions.
the filament. The typical distance between attachment anth Sec. Ill, we introduce the mean-field equations for the
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open system and discuss their solution by means of charac- First consider the steady state on a periodic sys$tenere
teristics. Then we discuss the stationary solutions on theite N+ 1 is identified with site 1 and Eq&4) and(5) do not
mean-field level and compare the mean-field results t@pply]. Assuming translational invariance, ) is satisfied
Monte Carlo(MC) simulations. Fluctuations of the shock by (7;)=peq, Where

positions are analyzed in Sec. V and finally, some concluding

remarks are given in the last section.

Il. MODEL

We consider a one-dimensional open chainNofsites,

Peq— wpl(wat op). 9

We refer to density9) as the equilibrium density as it is the
density obtained in the Langmuir absorption mog@20].
Furthermore, it can be verified that the steady state of the

which can either be emptyr(=0) or be occupied with one SyStém is given by a product measure with density of par-
particle (-;=1). Particles can jump to the neighboring site if tiCleS peq-

it is empty. In addition, the bulk sites are coupled to particle

reservoirs, i.e., particles are attached with rate and de-

We can apply particle-hole symmetry in order to simplify
the discussion of the model. In the case of open boundary

leted with ratewp, . The particle reservoirs at the boundaries conditions, the system of equatiof®—(8) is invariant under
are different from the bulk. At the first site, particles are the simultaneous exchanges- 3, wp—wp, i—L—i, and

attached with rater and deleted with ratep, while at the

last site particles attach with rate, and are deleted with
rate 8 [14]. By a rater it is meant that in infinitesimal time

interval dt, the probability of the event occurring isdt.
Schematically, the dynamics can be written as follows:

WA

* 0—x* 1, (1)
@p

1+—0x, (2
1

10-01, ©)

where 1(0) corresponds to an emptpccupied site and *
implies that the update is independent of the state.

The dynamics at the left-hand bounddsjte 1) is inser-
tion of particles

a

0—1, (4)

and at the right-hand boundafgite N) is removal of par-
ticles

B
1—0. (5)

pi—1l-p;.

IIl. MEAN-FIELD EQUATIONS AND CHARACTERISTICS

In the largeN limit, we can make the continuum mean-
field approximation to Eq(6). First, we factorize correlation
functions by replacing 7;(1— 7, 1)) with (7;_1)(1— (7))
[21], then we set

B +1 (9p+ 1 &%p 10
<Ti:1>_P(X)—N& Nl (10
Keeping leading order terms inN/ one obtains
P (1-2p) 4 woN[K = (14K 11
o-=~(1-2p) +wpN[K—(1+K)p], (1)
wherer=t/N and
K=wA/wD. (12)

For the open system, we shall be interested in the scaling
limit where

QAZ(DAN and QDZ(J)DN (13)

are finite asN—«. The boundary conditions beconpgx
=0)=a andp(x=1)=(1-5).
To understand the first-order differential equatidli),

The exact equation for the evolution of the particle densitiegne can study the characterist[@2], which are defined for

(7;) away from the boundaries €i<N) is given by

(s m) (1 ) Fun(L )
dt i—1 i i i+1 A I

—wp(7), (6)

where (- --) denotes the statistical average. At the bound-

aries, the densities evolve as

d
<(;:[1>:_<Tl(1_72)>+a<1_Tl>_wD<Tl>v (7)

d<TN>_
T—<TN—1(1_TN)>+‘UA<1_TN>_,3<TN>- 8

a quasilinear equation

dap ap
a(X,T,p)E-I—b(x,r,p)a—)(:c(x,r,p), (14
by the equations
dx b(x,T, d c(X,T,
dx_btx7p) —dp_clx7p) 15
dr a(x,7,p) dr a(x,7,p)

Roughly speaking, characteristics are curves along which in-
formation about the solution propagates from the boundary
conditions of the partial differential equation. Based on char-
acteristics, Lighthill and Whitharf23] developed the theory

of kinematic waves for equations with mass conservation
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and showed how kinematic shock waves arise. Here, we geff-his is a first-order ordinary differential equation, which, in
eralize this picture to Eq11), where the number of particles principle, can be solved analytically. The only difficulty is
is not conserved. the occurrence of shocks in the solution. To construct the
In the present case, the characteristics are given by solution, we integrate from the left bounddry(0)=«a] to
find a profile p;(x):

ox
—-=1-2p, (16) . ifp'(x)d 1-2p 20
Qple  PK=(1+K)p
dp
- = {Qo[K=(1+K)p]. 7 1 K-1 K=(1+K)p|
Rl GO sl e paymih
Equations(16) and (17) are to be interpreted as kinematic (21)

waves[ 23], which propagate changes in the density, moving ] ) ]
with speed 1-2p but with the density of the wavp itself ~ and integrate from the right boundafry(1)=1- ] to find
changing with time. In the absence of creation and annihila2 Profile p;(x) through
tion of particles, the density of the wave is constant in time
and the waves propagate in straight lines. However, in the 1—x=
presence of creation and annihilation of particles, the waves Qp(1+K)
will follow a curve in thex-t plane. For example, consider a
density fluctuation starting at the left boundary wjik0) n K-1 K-(A+K)(1-B) (22)
=a<1/2 and a<K/(1+K). Initially, the fluctuation will (1+K) K—=(1+K)p, ||
propagate to the right with speed-2p with its density ) .
increasing and speed decreasingKI{1+K)<1/2, i.e.,K  To determine the full _prof|le across the system, we have to
<1 the density will approach=K/(1+K) and the fluctua- match 'Fhese two profiles at a shock whose position is to be
tion will propagate to the right with a fixed speed. However,determined.
if K/I(1+K)>1/2, after some time the density of the fluc-
tuation will reachp=1/2 and the fluctuation will cease to A. The caseK=1
propagate. Similarly, a kinematic wave starting at the right
boundary with p(1)=1-p8, where f<1/2 and f<1/(1
+K) will travel to the left with decreasing density and de-
creasing speed.

When two characteristic lines cross, multivalued densities ap
are implied; therefore, descriptidgfl) by a first-order differ- (2p—1) ( X Q) =0, (23
ential equation breaks down. However, Lighthill and
Whi'gham showed that the eff_e_ct is that a sho_ck, i.e., a disyhere 0=0,=0,.
continuity between the densitigs; and p,, arises at the
meeting points of the two characteristics and this discontinu
ity travels with speed . This speed is determined by bal-
ance of mass current to ha3g]

2(1-B—py)

First, we consider the special caseot 1, i.e., where the
attachment and detachment processes have equal rates. The
steady-state mean-fie[@1F) equation(19) reads

This can be solved explicitly by a
piecewise linear trial function leading to the condition: either
b(x)zconst:peqz% or p(x) has slope(). Note that this
solution implies that higher derivatives in EQLO) vanish
exactly.
First, we consider the parameter regime 1/2, 5<1/2,
D= p2(1=pa) —pa(1—p1) —1—pi—py. (189  Where shock formation is possible. In order for the shock’s
pP2—pP1 position to be stable, i.e., for it not to be driven out of the
system the shock’s speed, as determined by(H), should
In the present case, although the mass is not conserved, the zero. Thus, the densities at the discontinuity should be
mass current through the shock still implies that its velocityrelated byp,(xs)=1—p;(Xs) and this determines the posi-
is given by Eq.(18). Thus, fora<1/2, B<1/2, we have the tion of the shockxs,
possibility of a shock forming then being driven to a position

where the mass current through it is zero and the shock re- B—a 1
mains stationary. In the following section, we shall show Xs= 20 +§- (24)
how this picture is borne out by solving the steady-state
mean-field equation. The height of the shock is given by
IV. STEADY-STATE SOLUTION A=p(Xs) =pi(Xs) =1=(a+B)—Q=0.~Q. (29
Setting the time derivative of E¢11) to zero yields The last equation can be used in order to discuss the param-

eter dependence of the model. Af is positive and 6<Xq
ap _ <1, we find indeed a shock, which connects two domains
(1=2p) 75— QolK=(1+K)p]=0. 19 with linear density dependence, as illustrated in Fig. 1. For
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0.8

023 ' ' N FIG. 1. Density(7) (left) and

I ] flow (ji)=(7(1-7+1)) (right)
profiles for «=0.2, 8=0.3, K
=1, andQ=0.1. For the MC re-
sults, we setx=i/N. The con-
tinuum mean-field theory results
are compared to MC simulations
) of different system sizes. The
Nﬁﬁ)ggg: M o agreement between MF and MC
0.15 . . . results is improved for larger sys-
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0>, one does not observe shock formation, but a sectione., apart from the two singular points=0 andx=1, the
(1-2a)l2Q<x<1—(1—2B)/2Q), where p=3 (see density is constant.
Fig. 2. The above results lead to the phase diagram shown in Fig.
In the ASEP, the linew= is a phase boundary where 4. Three phases can be distinguished, where the density pro-
shocks, between a high-density region coexisting with a lowfile does not reach the equilibriupy,: The high- and low-
density region, exist: Mean-field theory predicts the shock iglensity phase, where only a single domain exists in the sys-
at x=1/2 although the exact solution shows that the shock isem, the shock(see Fig. 1 for the corresponding density
actually delocalized and yields a linear density prdfilg In profile) region, where high- and low-density domain coexist.
the present case, although the shock’s positiorxssl/2  Then there are four phases, where the density profile has a
when a= g, the role of this line changes and one does noisection of constant density: The maximal-current phaée
observe a phase transition in crossing it. is obtained fora>1/2 and3>1/2. If «>1/2 and 1/2> B
Moreover, linear density profiles, which are observed for>1/2— (), we observe coexistence between a section of den-
a+B+Q=1, do not signify phase coexistence as for thesity 1/2 at the left and a linear profile as shown in Fig. 3. This
ASEP, but indicate a vanishing height of the shock ( phase is indicated by HM in the phase diagram, the corre-
=0). Also note that a strictly linear profile is observed only sponding low-density phase by LM. Finally, a section of con-
in the limit N— < in contrast to the disorder line of the ASEP stant density may coexist with a high- and low-density sec-
(which is recovered in case d@=0) where the constant tion (LMH) (see Fig. 2 We observe all phases only §

density solution is valid for finite systems as well. <1/2. For 1/2Q<1, the high- and low-density phases
Next we discuss the case>1/2 andg<1/2. In this pa- vanish, while forQ>1 the formation of a shock is excluded.
rameter regime, the density profile is given by Our MC analysis illustrates the validity of the mean-field
results for large system. This is in contrast to the c8se
_ 1 =0, where, e.g., fow= B the exact density profile even in
p(x)—ma{l—ﬂ—ﬂ(l—x),i forx>0. (26 the limit N— < is different from the mean-field results.

Equation(26) implies a singularity ak=0 since the bound- B. The caseK # 1
ary condition isp(0)= «. For finite systems, the singularity
at x=0 is softened as shown in Fig. 3. The behavior dor
>1/2 andB<1/2 can be obtained from particle-hole symme-
try.

Finally, in the maximal current regime, the density profile
in the limit L—oo is given by

In the caseK#1, the equilibrium density is different
from p=1/2. Therefore, it is impossible to observe a maxi-
mal current phase because the bulk particle reservoirs de-
stroy any maximal-current domain. The absence of the
maximal-current phase originates in E¢s6) and (17): For
the kinematic wave to be stationary one requires both Egs.
a for x=0 (16) and(17) to be zero, i.e., a bulk density satisfying both
p=1/2 andp=K/(K+1). It is also important to notice that

p(x)=1 12 for 0<x<1 (27) the solution of the mean-field equations is not piecewise lin-
1-B8 for x=1. ear, i.e., higher order terms of EGLO) do not vanish. We
1.0 — N 0.26
NNTmO’ mg rrrrrrrrrrrr [ f
08 [ Y7000 MG 022} FIG. 2. Same as Fig. 1, but the

parametersa=0.2, =0.1, K
=1, and 2=2.0 are used. For
this larger value of)=2.0 shock

0.18 [/

jx)

0.14 | CMF formation is preempted by reach-
N=100, MC . ing the density po=1/2, see
0.10 } N=1000, MC (9.
. . . . N=10000, MG - , Ea. (9)
0 0.2 0.4 0.6 08 1 0 0.2 0.4 0.8 0.8 1
X X
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0.8 o : : : 0.28
N=100, MC - £ |
N=1000, MC —— .
0.7 L N=10000, MC ——-— /] 0.24 |
FIG. 3. Same as Fig. 1, but the
= = parametersa=0.8, =0.2, K
06t yd : = 0.20 | =1, and Q=0.6 are used. The
. ' \ | average densities at the first site
N=100, MC are indicated by symbols.
0.16 [ N=1000, . 3
. ) . . N=100.00’ MC e )
0 0.2 0.4 0.8 0.8 1 o 02 04 08 08 1
X X
now analyze the mean-field equations Kor1 in more de- Similarly, for large 8 the solutionp, may propagate all

tail. The corresponding results fd€<1 can be obtained the way to the left boundary where its densitypig0). A

from particle-hole symmetry. We consider separately the reshock betweerp, and p, will be driven to the left-hand
gime wherea<1/2 andg<1/2 and the complementary re- houndary ifp,(0)>1-p;(0)=1-a. This will be referred
gime. to as the high-density regiofHD). The transition line be-

Casea<1/2and B<1/2. For low values otr and3, we  tween HD andS regions is given by the conditiop,(0)
expect the existence of a high- and low-density phase as well 1 — ,:

as the formation of shocks within a certain density regime as

for the special cas&€=1. The transition lines can be ob- K—1 K—(1+ K)(l—,B)‘

tained by analyzing the shock position, which is determined Qp(1+K)=|2(a—B)+ Inj->— — |
J ; (1+K)  |K—(1+K)(1-a)|

from the conditionp,=1—p,. The shock separates a region

where the density is given by E(®1) and a region where the (29

density is given by Eq(22). Casesa>1/2 or 3>1/2. Fora>1/2 or 8>1/2 second-
For low a solution(21) may propagate all the way to the 4 4qr terms(e.g., terms involving??p/dx2) have to be re-

right boundary. If the density at the right boundary satisfieszined in Eq.(11) for steady-state solutions to exist. How-
p1(1)<p (1)=pB any shock will be driven out and the sys- gyer the effect is, for example, in the case 1/2, 8> 1/2 at
tem will be dominated by, . This will be referred t0 as a he right-hand boundary, that over a finite distariok the
low-density regionLD). The transition line between LD and qer of 1N in terms of the variables) the second-order
Sregions is given by the condition (1)=4: terms will match the density with that implied kpy . Thus,
the effect is that there is no shock aBd>1/2 may for the
. purposes of the phase diagram mayelffectivelyconsidered
asB=1/2. In Fig. 5 comparison of direct simulations of the
(28) model whenB>1/2 with density profiles obtained from the
continuum theorywith B effectively considered as 1y/2n-
dicate the validity of our approach in the larbyelimit.

For finite N, finite-size effects can partially be included by
considering second-order terms in the mean-field description.
B LM M Deviations between second-order mean-field and the exact

results are due to the fluctuations of the shock, which are not
L correctly described by mean-field theory and have to be

Qp(1+K)=|2(8—a)+ K=1 K U+KB

(1+K) "|[K—(1+K)a|

° T —
~ , N=100 ~-mroe

HM SIM, N=1000 -

SIM, N=10000 -

Q 05 ¢ 0 : : : :
0 02 04 06 08 1
X

FIG. 4. Phase diagram fa¢=1 and(}<1/2. Indicated are the
high- (H) and low-densityL) phase, the shock phas8)( the maxi- FIG. 5. Density profiles obtained from Monte Carlo simulations
mal current phaséM), and coexistence between a maximal currentof the model fora=0.2, 8=0.6, K=3, Qp=0.1, andN= 100,
and low-(LM) or high-density(HM) domain. The LMH phase in- 1000, 10 000. The full line gives density profiles obtained from the
dicates the presence of three domains. A linear density profile isontinuum mean-field theory, Eq1) and (22) with 8 set equal
observed at the transition line between the LMH &yhase. to 1/2.
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1

L J-(x) L1+
W|(|):W, Wr(l): A(|) ) (31)

0.8 |
06 wherew; (w,) denotes the hopping rate to the Iéfight),
j—(@i) [j+(i)] the flux in the low-(high-) density domain at
sitei, andA(i) the height of the shock at positianModel-

ing the shock dynamics as a random walk with reflecting
boundary conditions allows us to derive analytical expres-
sions for the stationary distributigmy(i) of shock positions.
The stationary distributiopg(i) has to fulfill the condition

0.4
0.2 r

0

0 02 04 06 08 1
o

FIG. 6. Mean-field phase diagram fo¥;=0.1, K=3. (right).
The phase boundaries between the low deri&ily shock &), and W, (1) ps(i)=w,(i+1)pg(i+1). (32
high density(H) phases are calculated by using E@8) and(29).
Our results are in excellent agreement with the findings of Rdl.  One can solve this discrete equation explicitly, but it is sim-
who analyzed numerically the second-order mean-field equationsplest to proceed by making a continuum approximation. We

expand the probability distribution to first order ifNl/as in

treated separately. This will be done in the following section.Eq. (10), and use the stationarity condition to obtain the dif-
However, at this stage we note that the shock is indeed loferential equation
calized and that the width of the shock growth subexten-
sively, i.e., the shock is sharp in the linht— .

Phase diagramOur analysis folK # 1 leads to the phase
diagram shown in Fig. 6. We distinguish only three phases,
i.e., the high- and low-density phase as well as the formatiogvhere y(x) = p(x)w;(x). The solution of this equation is
of shocks in an intermediate parameter regime. Compared tgiven by
the caseK=1, the number of phases is considerably re-

W, (X)
y'(x)+Ny<x)(1—ﬁ):o, 33

duced, due to the absence of a maximal-current phase as P(x) 1 X W, (x")
discussed above. POX) =7 = —exg — f - —|dx’|,

As the shock is sharp the fluctuations of the shock, which Nw(x") %o wi(x’)
we treat in the following section, do not affect the phase (34
boundaries. Therefore, we expect that the true phase diagram I~ . . o
of the model is represented by Fig. 6. whereN= [;p(x)dx. Explicit expressions of the distribution

can be given in case df=1, which will be discussed in

V. DYNAMICS OF THE SHOCK detail. For this case, we get the unnormalized distribution

o [N(1+A)A)/ Q-1

A qualitative understanding of the shock dynamics can be it 2
QO

easily obtained from mass conservation, i.e., by means of the p(x)=
continuity equation. Compared to the ASEP additional )
source and sink terms have to be introduced, reflecting the ~e CxT (39
on-site input and output of particles. This has been done in a

recent work by Popkoet al. [24], who generalized the do- where C=4NQA/[(1—-A)(1+A)]. The Gaussian is ob-
main wall picture to models with particle input and output, tained from a logarithmic expansion of the exponent, which

X

[N(lA)A]/Ql( 1- a

where the continuity equation is given by is justified in the limitN— oo [29].
Using the random walk picture, the density profile can be
ap(x,t) @ obtained from the shock distributiqn(x) through[27]

o (D)= QA 1= p(x, 0] = Qpp(xt). (30)

X 1
— ! /+ ! /'
By inserting the known relation(p)=p(1—p) they recov- PO =pr(x) fo POX)dX"+ pi(x) fx p(x")dx (36)
ered Eq.(11). The importance of the analysis by means of
the hydrodynamic equation is given by the fact that this apThe Gaussian approximation p{x) leads to the following
proach can be used for general models if the flow-densityorm of the density profile:

relation is known 24].
A step beyond the mean-field level is provided by inter- A NQA

preting the shock as a random walker. For the ASEP, on the?(X)= 5| 1+erf| 2y m(x—xs) +Qx+a.

line «= B the shock dynamics can be modeled as an unbi- (37)

ased random walk25] and this allows one to calculate its

diffusion constant. Moreover, one can generally consider kiin order to check the validity of this simple phenomenologi-

nematic shock wave dynamics as a biased random walkeal picture, we compare the analytic predicti@B%) for dif-

[26,27]. In the present case, we model the shock by a randorferent density profiles in th& phase with results of MC

walker with the site-dependent hopping rates simulations[30]. Figure 7 shows that the random walk pre-
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0.8 T T T T 0.3 T T

CMF " flow left

- N'\—_ng)gg’ Mg flow right -------- FIG. 7. Left: Density profiles

0.6 | N=10000, MC in comparison with the DW pre-
_ NeT o0, D dictions. The chosen parameters

Z [ N=10000, DW -~ area=0.2, 3=0.3, 0=0.2, and

04 f K=1. Right: Flow profile of the

left (solid line) and right domain

""""" (dashed ling for same set of pa-
0.2 rameters. The arrows indicate the

- bias of the random walker.
0 02 04 0.6 0.8 1
X X

dictions are in good agreement with the MC results and the By considering the characteristics of the mean-field equa-
accuracy of the random walk description improves for largettions, the formation and localization of the shock can be

system sizes. explained: The characteristic solutions propagating from the

From Eq.(37) it follows that the width of the shock scales left and right boundaries are matched at the shock whose
asN~” with v=1/2 as was found numerically in RefL4]. position is fixed by the condition that the mass current

through the shock is zero. In the presence of a shock, the

VI. CONCLUSION leading finite-size corrections are due to the fluctuations of

the shock position, which can be described by mapping the

The model studied by Parmeggiani, Franosch, and Fregynamics of the shock to a random walk with site-dependent
[14] can be interpreted as a generic model for the collectivéhopping rates.
behavior of molecular motors. The physics of the model is  Apart from the importance of the ASEP with creation and
governed by the competition of different particle reservoirsannihilation of particles in the bulk as a generic model for
and the stationary flow of the self-driven particles. In themolecular motors it is of special interest for the general for-
case of periodic boundary conditions, one easily verifies thatalism of nonequilibrium statistical mechanics. In particular,
the stationary state of the process is described by a produohe can interpret the bulk nonconservation of particles as
measure. More interesting features are observed in the casgchange of particles with a bulk reservi8]. In this way,
of open boundary conditions. Here, when the rates for attachthe model can be thought of as a grand-canonical counterpart
ment and deletion of particles in the bulk are appropriatelyto the ASEP. As the ASEP and its variants can be analyzed in
scaled with system size, localization of a shock arises bedetail, they might help us to understand aspects of different
tween the region of the system controlled by the left boundensembles in the context of nonequilibrium statistical me-

ary and the region controlled by the right boundary. chanics.
Most of the features of this model can be explained by a
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