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Shock formation in an exclusion process with creation and annihilation
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We investigate shock formation in an asymmetric exclusion process with creation and annihilation of
particles in the bulk. We show how the continuum mean-field equations can be studied analytically and hence
derive the phase diagrams of the model. In the large system-size limit direct simulations of the model show that
the stationary state is correctly described by the mean-field equations, thus the predicted mean-field phase
diagrams are expected to be exact. The emergence of shocks and the structure of the phase diagram are
discussed. We also analyze the fluctuations of the shock position by using a phenomenological random walk
picture of the shock dynamics. The stationary distribution of shock positions is calculated, by virtue of which
the numerically determined finite-size scaling behavior of the shock width is explained.
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I. INTRODUCTION

The analysis of self-driven particle models is a cent
issue of nonequilibrium statistical mechanics@1–5#. These
models show a variety of generic nonequilibrium effects,
particular, in low dimensions. Although the behavior is ge
erally rather complex, some models are simple enough to
analyzed in great detail. In rare cases, it is even possibl
obtain exact results for the stationary state@2,5#. A very
prominent example of such a model is the asymmetric ex
sion process~ASEP! which comprises particles hopping in
preferred direction under the constraint that they cannot
cupy the same lattice site. Exact solutions for the station
state exist for periodic@1,6# and open boundary condition
@7,8# and different update schemes@9–11#. Therefore, this
model has been used in order to develop more general
cepts for systems far from equilibrium, e.g., a free-ene
formalism@12#. Variants of the model have also allowed th
study of shocks which are discontinuities in the density
particles over a microscopic distance@13#.

The ASEP and related models are not only of acade
interest, but have a number of important applications, e.g
simplified traffic models@4#. Here, we are interested in
variant of the ASEP, which is motivated by biological tran
port processes in living cell systems, where particle nonc
servation in the bulk of the system is allowed@14# ~see also
Ref. @28#!.

An important feature of living cells is their ability to
move and to generate forces@15–17#. On a microscopic leve
these forces are mostly generated by motor proteins@18,19#,
which are able to perform directed motion along on
dimensional paths or filaments.

Many different motor proteins can be distinguished@18#,
but they have a few common properties: a head, which
couple to a filament, where it performs a directed stocha
motion and a tail, which is attached to a specific load, wh
has to be transported through the cell. The coupling of
motor protein heads to the filament is reversible, thus
motor proteins will attach to the filament, perform stochas
directed motion for some time, and eventually detach fr
the filament. The typical distance between attachment
1063-651X/2003/68~2!/026117~8!/$20.00 68 0261
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detachment of the motor protein to the filament depends
the particular type of filament.

To a first approximation, the motion of many motor pr
teins along a filament can be modeled by the asymme
exclusion process. An important feature, which is not d
scribed by the ASEP, is the attachment and detachment o
motor-protein heads. This feature has been included in a
cent model by Parmeggianiet al. @14# ~see also Ref.@28#!,
which can be viewed as a grand-canonical counterpart of
ASEP in the sense that in the bulk the particle number is
conserved.

For open boundary conditions, however, the situation
different. In this case, if the rates of attachment scale c
rectly with system length, one observes a subtle interp
between the left, right, and bulk particle reservoirs. If we
the attachment and detachment rates then there are w
regions of the phase diagram~spanned by the densities of th
boundary reservoirs! where one observes thelocalizationof
shocks in the bulk of the system. This is in contrast to
ASEP, where shocks move with constant velocity and
generally driven to the boundary of an open system. T
shock has zero velocity only on the phase boundary wh
two phases of different density coexist. Even in this case,
shock is not localized since it diffusively explores the who
system.

The physical origin of the shock localization in th
present model and a discussion of the phase diagram, in
ticular, the phase where shocks appear are the subject o
paper. We shall show how the phase diagram can be
dicted through simple considerations pertaining to a c
tinuum mean-field description that only retains first-ord
terms, i.e., the phase diagram can be predicted through
study of a simple first-order nonlinear partial differenti
equation. Going beyond the mean level, in the shock ph
we describe the dynamics of the shock by a random wa
with space-dependent hopping rates. In this way, the lo
ization of the shock can be understood.

The paper is organized as follows. In the following se
tion, we give the definition of the model and introduce t
stationary solution in case of periodic boundary conditio
In Sec. III, we introduce the mean-field equations for t
©2003 The American Physical Society17-1



ra
th
t

k
in

if
cle

es
re

tie

d

e

the
ar-

fy
ary

-

ling

in-
ary
ar-

ion

EVANS, JUHÁSZ, AND SANTEN PHYSICAL REVIEW E68, 026117 ~2003!
open system and discuss their solution by means of cha
teristics. Then we discuss the stationary solutions on
mean-field level and compare the mean-field results
Monte Carlo ~MC! simulations. Fluctuations of the shoc
positions are analyzed in Sec. V and finally, some conclud
remarks are given in the last section.

II. MODEL

We consider a one-dimensional open chain ofN sites,
which can either be empty (t i50) or be occupied with one
particle (t i51). Particles can jump to the neighboring site
it is empty. In addition, the bulk sites are coupled to parti
reservoirs, i.e., particles are attached with ratevA and de-
leted with ratevD . The particle reservoirs at the boundari
are different from the bulk. At the first site, particles a
attached with ratea and deleted with ratevD , while at the
last site particles attach with ratevA and are deleted with
rateb @14#. By a rater it is meant that in infinitesimal time
interval dt, the probability of the event occurring isrdt.
Schematically, the dynamics can be written as follows:

* 0→
vA

* 1, ~1!

1 * →
vD

0 * , ~2!

1 0→
1

0 1, ~3!

where1(0) corresponds to an empty~occupied! site and *
implies that the update is independent of the state.

The dynamics at the left-hand boundary~site 1! is inser-
tion of particles

0→
a

1, ~4!

and at the right-hand boundary~site N) is removal of par-
ticles

1→
b

0. ~5!

The exact equation for the evolution of the particle densi
^t i& away from the boundaries (1, i ,N) is given by

d^t i&
dt

5^t i 21~12t i !&2^t i~12t i 11!&1vA^12t i&

2vD^t i&, ~6!

where ^•••& denotes the statistical average. At the boun
aries, the densities evolve as

d^t1&
dt

52^t1~12t2!&1a^12t1&2vD^t1&, ~7!

d^tN&
dt

5^tN21~12tN!&1vA^12tN&2b^tN&. ~8!
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First consider the steady state on a periodic system@where
siteN11 is identified with site 1 and Eqs.~4! and~5! do not
apply#. Assuming translational invariance, Eq.~6! is satisfied
by ^t i&5req, where

req5vA /~vA1vD!. ~9!

We refer to density~9! as the equilibrium density as it is th
density obtained in the Langmuir absorption model@20#.
Furthermore, it can be verified that the steady state of
system is given by a product measure with density of p
ticles req.

We can apply particle-hole symmetry in order to simpli
the discussion of the model. In the case of open bound
conditions, the system of equations~6!–~8! is invariant under
the simultaneous exchangesa↔b, vA↔vD , i↔L2 i , and
r i↔12r i .

III. MEAN-FIELD EQUATIONS AND CHARACTERISTICS

In the largeN limit, we can make the continuum mean
field approximation to Eq.~6!. First, we factorize correlation
functions by replacinĝ t i(12t i 11)& with ^t i 21&(12^t i&)
@21#, then we set

^t i 61&5r~x!6
1

N

]r

]x
1

1

2N2

]2r

]x2
. . . . ~10!

Keeping leading order terms in 1/N, one obtains

]r

]t
52~122r!

]r

]x
1vDN@K2~11K !r#, ~11!

wheret5t/N and

K5vA /vD . ~12!

For the open system, we shall be interested in the sca
limit where

VA5vAN and VD5vDN ~13!

are finite asN→`. The boundary conditions becomer(x
50)5a andr(x51)5(12b).

To understand the first-order differential equation~11!,
one can study the characteristics@22#, which are defined for
a quasilinear equation

a~x,t,r!
]r

]t
1b~x,t,r!

]r

]x
5c~x,t,r!, ~14!

by the equations

dx

dt
5

b~x,t,r!

a~x,t,r!
,

dr

dt
5

c~x,t,r!

a~x,t,r!
. ~15!

Roughly speaking, characteristics are curves along which
formation about the solution propagates from the bound
conditions of the partial differential equation. Based on ch
acteristics, Lighthill and Whitham@23# developed the theory
of kinematic waves for equations with mass conservat
7-2
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SHOCK FORMATION IN AN EXCLUSION PROCESS . . . PHYSICAL REVIEW E 68, 026117 ~2003!
and showed how kinematic shock waves arise. Here, we
eralize this picture to Eq.~11!, where the number of particle
is not conserved.

In the present case, the characteristics are given by

]x

]t
5122r, ~16!

]r

]t
5VD@K2~11K !r#. ~17!

Equations~16! and ~17! are to be interpreted as kinemat
waves@23#, which propagate changes in the density, mov
with speed 122r but with the density of the waver itself
changing with time. In the absence of creation and annih
tion of particles, the density of the wave is constant in tim
and the waves propagate in straight lines. However, in
presence of creation and annihilation of particles, the wa
will follow a curve in thex-t plane. For example, consider
density fluctuation starting at the left boundary withr(0)
5a,1/2 anda,K/(11K). Initially, the fluctuation will
propagate to the right with speed 122r with its density
increasing and speed decreasing. IfK/(11K),1/2, i.e.,K
,1 the density will approachr5K/(11K) and the fluctua-
tion will propagate to the right with a fixed speed. Howev
if K/(11K).1/2, after some time the density of the flu
tuation will reachr51/2 and the fluctuation will cease t
propagate. Similarly, a kinematic wave starting at the ri
boundary with r(1)512b, where b,1/2 and b,1/(1
1K) will travel to the left with decreasing density and d
creasing speed.

When two characteristic lines cross, multivalued densi
are implied; therefore, description~11! by a first-order differ-
ential equation breaks down. However, Lighthill an
Whitham showed that the effect is that a shock, i.e., a
continuity between the densitiesr1 and r2, arises at the
meeting points of the two characteristics and this disconti
ity travels with speedvs . This speed is determined by ba
ance of mass current to be@23#

vs5
r2~12r2!2r1~12r1!

r22r1
512r12r2 . ~18!

In the present case, although the mass is not conserved
mass current through the shock still implies that its veloc
is given by Eq.~18!. Thus, fora,1/2, b,1/2, we have the
possibility of a shock forming then being driven to a positi
where the mass current through it is zero and the shock
mains stationary. In the following section, we shall sho
how this picture is borne out by solving the steady-st
mean-field equation.

IV. STEADY-STATE SOLUTION

Setting the time derivative of Eq.~11! to zero yields

~122r!
]r

]x
2VD@K2~11K !r#50. ~19!
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This is a first-order ordinary differential equation, which,
principle, can be solved analytically. The only difficulty
the occurrence of shocks in the solution. To construct
solution, we integrate from the left boundary@r(0)5a# to
find a profiler l(x):

x5
1

VD
E

a

r l (x)

dr
122r

K2~11K !r
~20!

5
1

VD~11K ! F2~r l2a!1
K21

~11K !
lnUK2~11K !r l

K2~11K !aUG ,
~21!

and integrate from the right boundary@r(1)512b# to find
a profiler r(x) through

12x5
1

VD~11K ! F2~12b2r r !

1
K21

~11K !
lnUK2~11K !~12b!

K2~11K !r r
UG . ~22!

To determine the full profile across the system, we have
match these two profiles at a shock whose position is to
determined.

A. The caseKÄ1

First, we consider the special case ofK51, i.e., where the
attachment and detachment processes have equal rates
steady-state mean-field~MF! equation~19! reads

~2r21!S ]r

]x
2V D50, ~23!

where V[VA5VD . This can be solved explicitly by a
piecewise linear trial function leading to the condition: eith
r(x)5const5req5

1
2 or r(x) has slopeV. Note that this

solution implies that higher derivatives in Eq.~10! vanish
exactly.

First, we consider the parameter regimea,1/2, b,1/2,
where shock formation is possible. In order for the shoc
position to be stable, i.e., for it not to be driven out of t
system the shock’s speed, as determined by Eq.~18!, should
be zero. Thus, the densities at the discontinuity should
related byr r(xs)512r l(xs) and this determines the pos
tion of the shockxs ,

xs5
b2a

2V
1

1

2
. ~24!

The height of the shockD is given by

D5r r~xs!2r l~xs!512~a1b!2V[Vc2V. ~25!

The last equation can be used in order to discuss the pa
eter dependence of the model. IfD is positive and 0,xs
,1, we find indeed a shock, which connects two doma
with linear density dependence, as illustrated in Fig. 1. F
7-3
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FIG. 1. Density^t i& ~left! and
flow ^ j i&5^t i(12t i 11)& ~right!
profiles for a50.2, b50.3, K
51, andV50.1. For the MC re-
sults, we setx5 i /N. The con-
tinuum mean-field theory result
are compared to MC simulation
of different system sizes. The
agreement between MF and MC
results is improved for larger sys
tem sizes.
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V.Vc , one does not observe shock formation, but a sec
(122a)/2V,x,12(122b)/2V, where r5 1

2 ~see
Fig. 2!.

In the ASEP, the linea5b is a phase boundary wher
shocks, between a high-density region coexisting with a lo
density region, exist: Mean-field theory predicts the shoc
at x51/2 although the exact solution shows that the shoc
actually delocalized and yields a linear density profile@7#. In
the present case, although the shock’s position isx51/2
when a5b, the role of this line changes and one does
observe a phase transition in crossing it.

Moreover, linear density profiles, which are observed
a1b1V51, do not signify phase coexistence as for t
ASEP, but indicate a vanishing height of the shockD
50). Also note that a strictly linear profile is observed on
in the limit N→` in contrast to the disorder line of the ASE
~which is recovered in case ofV50) where the constan
density solution is valid for finite systems as well.

Next we discuss the casea.1/2 andb,1/2. In this pa-
rameter regime, the density profile is given by

r~x!5maxF12b2V~12x!,
1

2G for x.0. ~26!

Equation~26! implies a singularity atx50 since the bound-
ary condition isr(0)5a. For finite systems, the singularit
at x50 is softened as shown in Fig. 3. The behavior fora
.1/2 andb,1/2 can be obtained from particle-hole symm
try.

Finally, in the maximal current regime, the density profi
in the limit L→` is given by

r~x!5H a for x50

1/2 for 0,x,1

12b for x51.

~27!
02611
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i.e., apart from the two singular pointsx50 andx51, the
density is constant.

The above results lead to the phase diagram shown in
4. Three phases can be distinguished, where the density
file does not reach the equilibriumreq: The high- and low-
density phase, where only a single domain exists in the s
tem, the shock~see Fig. 1 for the corresponding densi
profile! region, where high- and low-density domain coexi
Then there are four phases, where the density profile h
section of constant density: The maximal-current phase~M!
is obtained fora.1/2 andb.1/2. If a.1/2 and 1/2.b
.1/22V, we observe coexistence between a section of d
sity 1/2 at the left and a linear profile as shown in Fig. 3. T
phase is indicated by HM in the phase diagram, the co
sponding low-density phase by LM. Finally, a section of co
stant density may coexist with a high- and low-density s
tion ~LMH ! ~see Fig. 2!. We observe all phases only ifV
,1/2. For 1/2,V,1, the high- and low-density phase
vanish, while forV.1 the formation of a shock is excluded
Our MC analysis illustrates the validity of the mean-fie
results for large system. This is in contrast to the caseV
50, where, e.g., fora5b the exact density profile even i
the limit N→` is different from the mean-field results.

B. The caseKÅ1

In the caseKÞ1, the equilibrium density is differen
from r51/2. Therefore, it is impossible to observe a ma
mal current phase because the bulk particle reservoirs
stroy any maximal-current domain. The absence of
maximal-current phase originates in Eqs.~16! and ~17!: For
the kinematic wave to be stationary one requires both E
~16! and ~17! to be zero, i.e., a bulk density satisfying bo
r51/2 andr5K/(K11). It is also important to notice tha
the solution of the mean-field equations is not piecewise
ear, i.e., higher order terms of Eq.~10! do not vanish. We
e

-

FIG. 2. Same as Fig. 1, but th
parametersa50.2, b50.1, K
51, and V52.0 are used. For
this larger value ofV52.0 shock
formation is preempted by reach
ing the density req51/2, see
Eq. ~9!.
7-4
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FIG. 3. Same as Fig. 1, but th
parametersa50.8, b50.2, K
51, and V50.6 are used. The
average densities at the first si
are indicated by symbols.
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now analyze the mean-field equations forK.1 in more de-
tail. The corresponding results forK,1 can be obtained
from particle-hole symmetry. We consider separately the
gime wherea,1/2 andb,1/2 and the complementary re
gime.

Casea,1/2 andb,1/2. For low values ofa andb, we
expect the existence of a high- and low-density phase as
as the formation of shocks within a certain density regime
for the special caseK51. The transition lines can be ob
tained by analyzing the shock position, which is determin
from the conditionr r512r l . The shock separates a regio
where the density is given by Eq.~21! and a region where the
density is given by Eq.~22!.

For low a solution~21! may propagate all the way to th
right boundary. If the density at the right boundary satisfi
r l(1),r r(1)5b any shock will be driven out and the sy
tem will be dominated byr l . This will be referred to as a
low-density region~LD!. The transition line between LD an
S regions is given by the conditionr l(1)5b:

VD~11K !5F2~b2a!1
K21

~11K !
lnUK2~11K !b

K2~11K !aUG .
~28!

FIG. 4. Phase diagram forK51 andV,1/2. Indicated are the
high- ~H! and low-density~L! phase, the shock phase (S), the maxi-
mal current phase~M!, and coexistence between a maximal curre
and low- ~LM ! or high-density~HM! domain. The LMH phase in-
dicates the presence of three domains. A linear density profil
observed at the transition line between the LMH andS phase.
02611
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Similarly, for largeb the solutionr r may propagate all
the way to the left boundary where its density isr r(0). A
shock betweenr r and r l will be driven to the left-hand
boundary ifr r(0).12r l(0)512a. This will be referred
to as the high-density region~HD!. The transition line be-
tween HD andS regions is given by the conditionr r(0)
512a:

VD~11K !5F2~a2b!1
K21

~11K !
lnUK2~11K !~12b!

K2~11K !~12a!
UG .
~29!

Casesa.1/2 or b.1/2. Fora.1/2 or b.1/2 second-
order terms~e.g., terms involving]2r/]x2) have to be re-
tained in Eq.~11! for steady-state solutions to exist. How
ever, the effect is, for example, in the casea,1/2, b.1/2 at
the right-hand boundary, that over a finite distance~of the
order of 1/N in terms of the variablex) the second-order
terms will match the density with that implied byr r . Thus,
the effect is that there is no shock andb.1/2 may for the
purposes of the phase diagram may beeffectivelyconsidered
asb51/2. In Fig. 5 comparison of direct simulations of th
model whenb.1/2 with density profiles obtained from th
continuum theory~with b effectively considered as 1/2! in-
dicate the validity of our approach in the largeN limit.

For finiteN, finite-size effects can partially be included b
considering second-order terms in the mean-field descript
Deviations between second-order mean-field and the e
results are due to the fluctuations of the shock, which are
correctly described by mean-field theory and have to

t

is

FIG. 5. Density profiles obtained from Monte Carlo simulatio
of the model fora50.2, b50.6, K53, VD50.1, andN5100,
1000, 10 000. The full line gives density profiles obtained from
continuum mean-field theory, Eqs.~21! and ~22! with b set equal
to 1/2.
7-5
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EVANS, JUHÁSZ, AND SANTEN PHYSICAL REVIEW E68, 026117 ~2003!
treated separately. This will be done in the following secti
However, at this stage we note that the shock is indeed
calized and that the width of the shock growth subext
sively, i.e., the shock is sharp in the limitN→`.

Phase diagram. Our analysis forKÞ1 leads to the phas
diagram shown in Fig. 6. We distinguish only three phas
i.e., the high- and low-density phase as well as the forma
of shocks in an intermediate parameter regime. Compare
the caseK51, the number of phases is considerably
duced, due to the absence of a maximal-current phas
discussed above.

As the shock is sharp the fluctuations of the shock, wh
we treat in the following section, do not affect the pha
boundaries. Therefore, we expect that the true phase diag
of the model is represented by Fig. 6.

V. DYNAMICS OF THE SHOCK

A qualitative understanding of the shock dynamics can
easily obtained from mass conservation, i.e., by means o
continuity equation. Compared to the ASEP addition
source and sink terms have to be introduced, reflecting
on-site input and output of particles. This has been done
recent work by Popkovet al. @24#, who generalized the do
main wall picture to models with particle input and outpu
where the continuity equation is given by

]r~x,t !

]t
1

]

]x
j ~r!5VA@12r~x,t !#2VDr~x,t !. ~30!

By inserting the known relationj (r)5r(12r) they recov-
ered Eq.~11!. The importance of the analysis by means
the hydrodynamic equation is given by the fact that this
proach can be used for general models if the flow-den
relation is known@24#.

A step beyond the mean-field level is provided by int
preting the shock as a random walker. For the ASEP, on
line a5b the shock dynamics can be modeled as an un
ased random walk@25# and this allows one to calculate it
diffusion constant. Moreover, one can generally consider
nematic shock wave dynamics as a biased random wa
@26,27#. In the present case, we model the shock by a rand
walker with the site-dependent hopping rates

FIG. 6. Mean-field phase diagram forVD50.1, K53. ~right!.
The phase boundaries between the low density~L!, shock (S), and
high density~H! phases are calculated by using Eqs.~28! and~29!.
Our results are in excellent agreement with the findings of Ref.@14#
who analyzed numerically the second-order mean-field equatio
02611
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wl~ i !5
j 2~x!

D~ i !
, wr~ i !5

j 1~x!

D~ i !
, ~31!

wherewl (wr) denotes the hopping rate to the left~right!,
j 2( i ) @ j 1( i )# the flux in the low-~high-! density domain at
site i, andD( i ) the height of the shock at positioni. Model-
ing the shock dynamics as a random walk with reflect
boundary conditions allows us to derive analytical expr
sions for the stationary distributionps( i ) of shock positions.
The stationary distributionps( i ) has to fulfill the condition

wr~ i !ps~ i !5wl~ i 11!ps~ i 11!. ~32!

One can solve this discrete equation explicitly, but it is si
plest to proceed by making a continuum approximation.
expand the probability distribution to first order in 1/N, as in
Eq. ~10!, and use the stationarity condition to obtain the d
ferential equation

y8~x!1Ny~x!S 12
wr~x!

wl~x! D50, ~33!

where y(x)5p(x)wl(x). The solution of this equation is
given by

p~x!5
p̃~x!

N 5
1

Nwl~x8!
expF2NE

x0

x S 12
wr~x8!

wl~x8!
D dx8G ,

~34!

whereN5*0
1p̃(x)dx. Explicit expressions of the distribution

can be given in case ofK51, which will be discussed in
detail. For this case, we get the unnormalized distribution

p̃~x!5S x1
a

V D [N(12D)D]/V21S 12a

V
2xD [N(11D)D]/V21

;e2C(x2xs)
2
, ~35!

where C54NVD/@(12D)(11D)#. The Gaussian is ob
tained from a logarithmic expansion of the exponent, wh
is justified in the limitN→` @29#.

Using the random walk picture, the density profile can
obtained from the shock distributionp(x) through@27#

r~x!5r r~x!E
0

x

p~x8!dx81r l~x!E
x

1

p~x8!dx8. ~36!

The Gaussian approximation ofp(x) leads to the following
form of the density profile:

r~x!5
D

2 F11erfS 2A NVD

~11D!~12D!
~x2xs! D G1Vx1a.

~37!

In order to check the validity of this simple phenomenolo
cal picture, we compare the analytic predictions~37! for dif-
ferent density profiles in theS phase with results of MC
simulations@30#. Figure 7 shows that the random walk pr

.
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FIG. 7. Left: Density profiles
in comparison with the DW pre-
dictions. The chosen paramete
are a50.2, b50.3, V50.2, and
K51. Right: Flow profile of the
left ~solid line! and right domain
~dashed line! for same set of pa-
rameters. The arrows indicate th
bias of the random walker.
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dictions are in good agreement with the MC results and
accuracy of the random walk description improves for lar
system sizes.

From Eq.~37! it follows that the width of the shock scale
asN2n with n51/2 as was found numerically in Ref.@14#.

VI. CONCLUSION

The model studied by Parmeggiani, Franosch, and F
@14# can be interpreted as a generic model for the collec
behavior of molecular motors. The physics of the mode
governed by the competition of different particle reservo
and the stationary flow of the self-driven particles. In t
case of periodic boundary conditions, one easily verifies
the stationary state of the process is described by a pro
measure. More interesting features are observed in the
of open boundary conditions. Here, when the rates for atta
ment and deletion of particles in the bulk are appropriat
scaled with system size, localization of a shock arises
tween the region of the system controlled by the left bou
ary and the region controlled by the right boundary.

Most of the features of this model can be explained b
mean-field analysis, which we believe to be correct in
limit of large system size. This is supported by Figs. 1, 2
and 5, where direct simulations for the density profiles c
verge for large system sizes to our mean-field predictions
view of this, we believe the mean-field phase diagrams, F
4 and 6, are in fact exact.
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By considering the characteristics of the mean-field eq
tions, the formation and localization of the shock can
explained: The characteristic solutions propagating from
left and right boundaries are matched at the shock wh
position is fixed by the condition that the mass curre
through the shock is zero. In the presence of a shock,
leading finite-size corrections are due to the fluctuations
the shock position, which can be described by mapping
dynamics of the shock to a random walk with site-depend
hopping rates.

Apart from the importance of the ASEP with creation a
annihilation of particles in the bulk as a generic model
molecular motors it is of special interest for the general f
malism of nonequilibrium statistical mechanics. In particul
one can interpret the bulk nonconservation of particles
exchange of particles with a bulk reservoir@28#. In this way,
the model can be thought of as a grand-canonical counter
to the ASEP. As the ASEP and its variants can be analyze
detail, they might help us to understand aspects of differ
ensembles in the context of nonequilibrium statistical m
chanics.
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@2# G. M. Schütz, in Phase Transitions and Critical Phenomen,
Vol. 19, edited by C. Domb and J. L. Lebowitz~Academic
Press, San Diego, 2001!.

@3# Nonequilibrium Statistical Mechanics in One Dimension, ed-
ited by V. Privman~Cambridge University Press, Cambridg
1997!.

@4# D. Chowdury, L. Santen, and A. Schadschneider, Phys. R
329, 199 ~2000!.

@5# H. Hinrichsen, Adv. Phys.49, 815 ~2000!.
@6# A. Schadschneider, Eur. Phys. J. B10, 573 ~1999!.
@7# B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys

26, 1493~1993!.
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